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ABSTRACT

We describe an automated digital temperature control

and measurement system with a temperature resolution of

0.3 to 3.0 mK and operating in the temperature range -40°C

to +700C.
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I. INTRODUCTION

In our work on the thermodynamic properties of

condensed phases, we must vary temperature in steps,

controlling the temperature to a millidegree

for as long as days at a time, until thermodynamic

equilibrium is attained. It has been our practice to

use analog controllers 1 5  to control our liquid

baths, vacuum thermostats, and layered thermostats.

With the appearance of inexpensive microcomputers, it

now becomes feasible to construct a dedicated digital

temperature control and measurement system. Such a

controller can regulate and step the temperature auto-

matically, while.the computer also collects the data

from the experimental transducers. The IEEE-488 inter-

face bus6 makes the hardware assembly straightforward;

this bus is becoming ever more prevalent and its price

is declining. The software has also been designed in a

simple way, avoiding the more sophisticated approaches to

such a "discrete-time" control system.
7 ,8

ile have built a digital temperature measurement and

control and data acquisition system with proportional and

integral temperature control. With our vacuum thermostat

and auxiliary cooler, we Can control and measure temperature

between -40*C and +700C with an accuracy of 3 mK and a

precision as small as 0.3 mK.

- -"*
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II. HARDWARE

A. Thermostat

Temperature control of better than a millidegree

cannot be achieved without attention to the design of

the thermostat itself. For a multistage vacuum thermo-

stat, we require the minimization of heat transfer

between stages and the maximization of heat transfer

within each stage. To minimize transfer between stages,

we evacuate the insulating space,.we use materials of

low thermal conductivity when we connect the stages, and we

thermally ground all wires passing from stage to stage.

To maximize thermal conductivity within a stage, we use

materials of high thermal conductivity.

These principles are illustrated in the design of

our vacuum thermostat, shown in Figure 1. The thermostat

consists of an outer vacuum can (A), an inner can (radiation shield) (B)

and the experimental stage (C). The two cans are evacuated

independently through vacuum lines D. The vacuum lines

and the connections between stages, E and F, are made of

thin-walled stainless-steel tubing. Vacuum connections, indicated

by closed circles, are made with elastomer o-rings. 9.10

The outer vacuum can A is made entirely of aluminum,

which provides good thermal conductivity with minimal

weight. Around the outer can is wrapped a 3/8" o.d. aluminum
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tubing at one turn per inch. The first stage of temperature

control is a commercial cooler-circulatorllwhich controls

the temperature of a circulating fluid to 0.02 K and pumps

the fluid through the aluminum tubing.

The second stage, radiation shield B. is made entirely of coDper. A

heater wire of #32 manganin wire with a total resistance

of 3380 is wrapped in grooves (6 turns/in.) around the can

and cemented with GE7031 varnish.

The experimental stage C is also made of copper. Experi-

mental transducers may be mounted on the upper and lower

surfaces of this stage.

Electrical leads for thermometers, heaters, thermocouples,

etc. enter the thermostat through the vacuum lines D from

a vacuum feed-through at the top of the vacuum lines.

These wires #30 enameled copper, are thermally grounded at

E and F. The high-frequency feed-throughs necessary for

certain of our experiments are coaxial SMA feed-throughs,

mounted on flanges G and H.

A vacuum of about 10" mmHg is maintained in the thermo-

stat by means of a mechanical pump and a diffusion pump.

We estimate the total heat transfer from the interior of the

thermostat to the cooler by radiation and conduction to be

about 1 W when the vacuum can A is at 20UK and the radiation

shield and experimental stage are at 273 K.

______ ____



4

An alternate design which we also use has all OFHC

copper stages and indium o-rings. It is more expensive to

build and more awkward to open and close, but has a

particularly small ou.t-gassing rate after a 100*C baking

(less than 0.5 VHg per day). It can therefore be dis-

connected from its vacuum pump for prolonged periods to

minimize mechanical vibrations.

B. Thermometry

The thermometers are a 100 platinum thermometer (Tl),

mounted on the experimental stage C, and a thermistor (T2),

mounted on the top flange H of the shield stage. The thermo-

meter circuits are shown in Fig. 2. Each thermometer is in

series with a standard resistor (RI and R2) and a mercury

battery. If RT is the resistance of the thermometer, VT the

voltage drop across the thermometer, and VS the voltage drop

across the standard resistor, then RT = (VT/Vs)RS. The

thermistor is a bead thermistor1 2 with an expected stability

of 0.05% (or 13 mK)per year. The standard resistors13 have

a temperature coefficient of 1 ppm/K and a stability of

5 ppm/year. VT and VS are measured by a 6 1/2-digit

voltmeter.
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The platinum thermometer was calibrated to l-mK by the

National Bureau of Standards on the International Practical

Temperature Scale of 1968. The thermistor was calibrated

withi respect to the platinum thermometer. Polynomial least

squares fits were obtained of T(RT) for the platinum thermo-

meter and of T(ln RT ) for the thermisto 4 ,15 With a voltage

resolution of l.V, we can resolve 3 mK on the platinum

thermometer and 0.3 mKon the thermistor. A second thermistor,

mounted on the experimental stage, could easily be added to

obtain the maximum temperature resolution.

C. Feedback loop

Figure 2 is a block diagram of the hardware for the

feedback loop. A scanner16 (multiplexer) allows us to

'read all the thermometer voltage with one voltmeter.7

Both the scanner and the voltmeter are under the control of

the microcomputer.8 The computer calculates the inner

stage and experimental stage temperatures from the volt-

ages, using the calibration equations. The temperature

of the inner stage is compared to the desired temperature

and the difference used to adjust the heater voltage by

means of a digital-to-analog (D/A) converter1 9 and a

programmable power supply.20

The scanner, voltmeter, and D/A converter all connect

to the computer via the IEEE-488 interface bus.

.i_ _
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III. SOFTWARE

A. General

The computer brings the shield stage temperature to a

desired value and controls it at that temperature until the

experimental stage reaches that same temperature (within a

given discrepancy) and remains so for a given time. Then

the computer collects the experimental data, which are voltages on the

other channels of the scanner (not shown in Fig. 2). The

computer repeats the data collection a number of times and

calculates a standard deviation for each voltage. During

the data collection, the shield is not under temperature

control, but the experimental stage is so isolated from

the shield that any drift does not reach the experimental

stage during the short time of the data collection ( a

few minutes). The data are recorded on a printer which

is connected to the computer by a IEEE-488-to-RS232

converter21 and on a cassette tape. Then the computer

increments the temperature and repeats the procedure given

above.
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B. Feedback loop

The feedback control consists of integral and

proportional control 7'8 of the shield temperature. The

experimental stage temperature follows the shield temper-

ature, mainly by gas conduction.

We use the following symbols:

TA = Ambient temperature of vacuum can

TD = Desired temperature of radiation shield and

experimental stage

T TS = Actual temperature of radiation shield

TE = Actual temperature of experimental stage

The "integral" control provides for most of the power

required to the radiation shield heater to maintain a given

difference between TA and TD. The power to the heater is

proportional to the square of the heater voltage. We

-designate this "steady-state voltage" by VSS and write

V2S d A I (TD - TA) (i)

where AI is a constant. AI can be determined empirically

or estimated from the calculated heat loss. The functional

relationship between V and (TD - TA) may be more complex

than equation (1), but equation (1) is an adequate first

approximation.

The "proportional" control provides the power to attain

TD when TS is less than TD. If V is the needed heater

I-
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voltage, then

V 2 A (T T (2)

If we consider this contribution to be primarily the heating

of the shield itself, ignoring the slow radiation loss to

the experimental stage, then to a first approximation

A p RC /t (3)

where R is the heater resistance, C is the heat capacity ofP
the shield, and t is the time allowed for the temperature

change. The "proportional gain" Ap can be initially set via

equation (3), then adjusted by trial and error to achieve

maximum gain without oscillation. ,8

The &quafe-ef-te total voltage applied to the heater is therefore

V =V + V (4)
SS p

If TD is less than TS, then the V is set to zero until TD

is attained. Cooling is such a slow process that "proportional"

-cooling is not necessary in our thermostat.

Figure 3 is a flow diagram of the control program, which

is written in BASIC. The keyboard input allows the operator

to enter the starting value of TD, the desired temperature

increments AT, the number of increments N, and the circulating

cooler temperature TA. If TD<TS, then no voltage is applied to

the heater. If TD>TS, then a voltage calculated from equations

1-4 is applied to the heater. This determination of TS relative

to TD is done repeatedly, at a sampling interval of about 20 sec.

The control do-loop continues as long as ITD-TSI>A, where A
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is on the order of millidegrees or ITs-TEI>B, where B is

on the order of 10-100 millidegrees. TI is the running

real time from the minicomputer clock. When ITD-T.I-A and

ITs-TEI<B, then control is maintained for a time C, after

which the data are collected, TD is incremented, and a

new control loop begins.

IV. PERFORMANCE

A typical plot of the temperature at the radiation

shield as a function of time while the feedback control is

in operation is shown in Figure 4. It is clear that the

deviations are less than 1 mK. The actual deviati'ons at

the experimental stage can be expected to be an order of

magnitude smaller. The time constant of the thermostat

is quite long. When TA is about 10 K less than TD, an in-

crease of 1K requires about 5 hours and a decrease of 1K

requires about 8 hours.

The control system does not seem to be particularly

sensitive to any of the control parameters - the constants

A I and Ap or the sampling time. Typically A, = 20 volts/deg

and Ap = 40 volts/deg.
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FIGURE CAPTIONS

Fig. 1. Vacuum thermostat: A, outer vacuum can; B, inner vacuum

can or radiation shield; C, experimental stage; D,

vacuum lines; E and F, vacuum connections and supports

for radiation shield and experimental stage; G and H,

flanges. The arawing is to scale, with the outer vacuum

can being 18 in. (4Scm.) high.

Fig. 2. Hardware for temperature control and measurement system.

T1 and T2 are resistance thermometers. Rl and R2 are

standard resistors. The scanner and voltmeter read

the voltage drops across Tl, T2, R1, and R2. The

computer calculates the temperature from the voltage

drops, compares the actual temperatures to desired

temperatures, then applies an appropriate voltage to

the heater via the digital-to-analog converter and the

programmable power supply.

Fig. 3. Flow diagram of computer program for temperature measure-

ment and control. The symbols are: TD, desired radiation

shield temperature; N, number of do-loops which increment

TD by an amount AT; TI, running real time on computer

clock; FG, flag to indicate when temperature first comes

to desired value; TS, actual radiation shield temperature;

TE, actual experimental stage temperature; V, voltage

applied to heater; A, allowed difference between TS and

M. .
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TE during control; B, allowed difference between TD

and TS during control; C, equilibration time interval

after control is achieved; H, real time at which data

are to be collected.

Fig. 4. Temperature at- the radiation shield as a function of

time while under the control of the computer system.

The temperature control at the experimental stage

is probably considerably better.
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